skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bernardez, Miguel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Studying convection, which is one of the least understood physical mechanisms in the tropical atmosphere, is very important for weather and climate predictions of extreme events such as storms, hurricanes, monsoons, floods and hail. Collecting more observations to do so is critical. It is also a challenge. The OTREC (Organization of Tropical East Pacific Convection) field project took place in the summer of 2019. More than thirty scientists and twenty students from the US, Costa Rica, Colombia, México and UK were involved in collecting observations over the ocean (East Pacific and Caribbean) and land (Costa Rica, Colombia). We used the NSF NCAR Gulfstream V airplane to fly at 13 kilometers altitude sampling the tropical atmosphere under diverse weather conditions. The plane was flown in a ‘lawnmower’ pattern and every 10 minutes deployed dropsondes that measured temperature, wind, humidity and pressure from flight level to the ocean. Similarly, over the land we launched radiosondes, leveraged existing radars and surface meteorological networks across the region, some with co-located Global Positioning System (GPS) receivers and rain sensors, and installed a new surface GPS meteorological network across Costa Rica, culminating in an impressive systematic data set that when assimilated into weather models immediately gave better forecasts. We are now closer than ever in understanding the environmental conditions necessary for convection as well as how convection influences extreme events. The OTREC data set continues to be studied by researchers all over the globe. This article aims to describe the lengthy process that precedes science breakthroughs. 
    more » « less
    Free, publicly-accessible full text available May 23, 2026